skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qi, Di"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2026
  2. Abstract State estimation in multi-layer turbulent flow fields with only a single layer of partial observation remains a challenging yet practically important task. Applications include inferring the state of the deep ocean by exploiting surface observations. Directly implementing an ensemble Kalman filter based on the full forecast model is usually expensive. One widely used method in practice projects the information of the observed layer to other layers via linear regression. However, large errors appear when nonlinearity in the highly turbulent flow field becomes dominant. In this paper, we develop a multi-step nonlinear data assimilation method that involves the sequential application of nonlinear assimilation steps across layers. Unlike traditional linear regression approaches, a conditional Gaussian nonlinear system is adopted as the approximate forecast model to characterize the nonlinear dependence between adjacent layers. At each step, samples drawn from the posterior of the current layer are treated as pseudo-observations for the next layer. Each sample is assimilated using analytic formulae for the posterior mean and covariance. The resulting Gaussian posteriors are then aggregated into a Gaussian mixture. Therefore, the method can capture strongly turbulent features, particularly intermittency and extreme events, and more accurately quantify the inherent uncertainty. Applications to the two-layer quasi-geostrophic system with Lagrangian data assimilation demonstrate that the multi-step method outperforms the one-step method, particularly as the tracer number and ensemble size increase. Results also show that the multi-step CGDA is particularly effective for assimilating frequent, high-accuracy observations, which are scenarios where traditional EnKF methods may suffer from catastrophic filter divergence. 
    more » « less
    Free, publicly-accessible full text available September 26, 2026
  3. The Arctic Ocean has experienced significant sea ice loss over recent decades, shifting towards a thinner and more mobile seasonal ice regime. However, the impacts of these transformations on the upper ocean dynamics of the biologically productive Pacific Arctic continental shelves remain underexplored. Here, we quantified the summer upper mixed layer depth and analyzed its interannual to decadal evolution with sea ice and atmospheric forcing, using hydrographic observations and model reanalysis from 1996 to 2021. Before 2006, a shoaling summer mixed layer was associated with sea ice loss and surface warming. After 2007, however, the upper mixed layer reversed to a generally deepening trend due to markedly lengthened open water duration, enhanced wind-induced mixing, and reduced ice meltwater input. Our findings reveal a shift in the primary drivers of upper ocean dynamics, with surface buoyancy flux dominant initially, followed by a shift to wind forcing despite continued sea ice decline. These changes in upper ocean structure and forcing mechanisms may have substantial implications for the marine ecosystem, potentially contributing to unusual fall phytoplankton blooms and intensified ocean acidification observed in the past decade 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. We propose a high-order stochastic–statistical moment closure model for efficient ensemble prediction of leading-order statistical moments and probability density functions in multiscale complex turbulent systems. The statistical moment equations are closed by a precise calibration of the high-order feedbacks using ensemble solutions of the consistent stochastic equations, suitable for modeling complex phenomena including non-Gaussian statistics and extreme events. To address challenges associated with closely coupled spatiotemporal scales in turbulent states and expensive large ensemble simulation for high-dimensional systems, we introduce efficient computational strategies using the random batch method (RBM). This approach significantly reduces the required ensemble size while accurately capturing essential high-order structures. Only a small batch of small-scale fluctuation modes is used for each time update of the samples, and exact convergence to the full model statistics is ensured through frequent resampling of the batches during time evolution. Furthermore, we develop a reduced-order model to handle systems with really high dimensions by linking the large number of small-scale fluctuation modes to ensemble samples of dominant leading modes. The effectiveness of the proposed models is validated by numerical experiments on the one-layer and two-layer Lorenz ‘96 systems, which exhibit representative chaotic features and various statistical regimes. The full and reduced-order RBM models demonstrate uniformly high skill in capturing the time evolution of crucial leading-order statistics, non-Gaussian probability distributions, while achieving significantly lower computational cost compared to direct Monte-Carlo approaches. The models provide effective tools for a wide range of real-world applications in prediction, uncertainty quantification, and data assimilation. 
    more » « less
  5. A new efficient ensemble prediction strategy is developed for a multiscale turbulent model framework with emphasis on the nonlinear interactions between large and small-scale variables. The high computational cost in running large ensemble simulations of high-dimensional equations is effectively avoided by adopting a random batch decomposition of the wide spectrum of the fluctuation states, which is a characteristic feature of the multiscale turbulent systems. The time update of each ensemble sample is then only subject to a small portion of the small-scale fluctuation modes in one batch, while the true model dynamics with multiscale coupling is respected by frequent random resampling of the batches at each time updating step. We investigate both theoretical and numerical properties of the proposed method. First, the convergence of statistical errors in the random batch model approximation is shown rigorously independent of the sample size and full dimension of the system. Next, the forecast skill of the computational algorithm is tested on two representative models of turbulent flows exhibiting many key statistical phenomena with a direct link to realistic turbulent systems. The random batch method displays robust performance in capturing a series of crucial statistical features with general interests, including highly non-Gaussian fat-tailed probability distributions and intermittent bursts of instability, while requires a much lower computational cost than the direct ensemble approach. The efficient random batch method also facilitates the development of new strategies in uncertainty quantification and data assimilation for a wide variety of general complex turbulent systems in science and engineering. 
    more » « less
  6. We propose a machine learning (ML) non-Markovian closure modelling framework for accurate predictions of statistical responses of turbulent dynamical systems subjected to external forcings. One of the difficulties in this statistical closure problem is the lack of training data, which is a configuration that is not desirable in supervised learning with neural network models. In this study with the 40-dimensional Lorenz-96 model, the shortage of data is due to the stationarity of the statistics beyond the decorrelation time. Thus, the only informative content in the training data is from the short-time transient statistics. We adopt a unified closure framework on various truncation regimes, including and excluding the detailed dynamical equations for the variances. The closure framework employs a Long-Short-Term-Memory architecture to represent the higher-order unresolved statistical feedbacks with a choice of ansatz that accounts for the intrinsic instability yet produces stable long-time predictions. We found that this unified agnostic ML approach performs well under various truncation scenarios. Numerically, it is shown that the ML closure model can accurately predict the long-time statistical responses subjected to various time-dependent external forces that have larger maximum forcing amplitudes and are not in the training dataset. This article is part of the theme issue ‘Data-driven prediction in dynamical systems’. 
    more » « less
  7. The western Arctic Ocean is rapidly acidifying due to sea ice loss. 
    more » « less
  8. Rapid climate warming and sea-ice loss have induced major changes in the sea surface partial pressure of CO2 ( pCO2I). However, the long-term trends in the western Arctic Ocean are unknown. Here we show that in 1994–2017, summer pCO2I in the Canada Basin increased at twice the rate of atmospheric increase. Warming and ice loss in the basin have strengthened the pCO2I seasonal amplitude, resulting in the rapid decadal increase. Consequently, the summer air–sea CO2 gradient has reduced rapidly, and may become near zero within two decades. In contrast, there was no significant pCO2I increase on the Chukchi Shelf, where strong and increasing biological uptake has held pCO2I low, and thus the CO2 sink has increased and may increase further due to the atmospheric CO2 increase. Our findings elucidate the contrasting physical and biological drivers controlling sea surface pCO2I variations and trends in response to climate change in the Arctic Ocean. 
    more » « less